55^2+x^2=172^2

Simple and best practice solution for 55^2+x^2=172^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 55^2+x^2=172^2 equation:



55^2+x^2=172^2
We move all terms to the left:
55^2+x^2-(172^2)=0
We add all the numbers together, and all the variables
x^2-26559=0
a = 1; b = 0; c = -26559;
Δ = b2-4ac
Δ = 02-4·1·(-26559)
Δ = 106236
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{106236}=\sqrt{36*2951}=\sqrt{36}*\sqrt{2951}=6\sqrt{2951}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{2951}}{2*1}=\frac{0-6\sqrt{2951}}{2} =-\frac{6\sqrt{2951}}{2} =-3\sqrt{2951} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{2951}}{2*1}=\frac{0+6\sqrt{2951}}{2} =\frac{6\sqrt{2951}}{2} =3\sqrt{2951} $

See similar equations:

| 12-3n=-6 | | -4(b-2)=-2(b+5) | | 14+x=90 | | 1.5(2x-10)+4x=-3(1.5x+4 | | -41=-4x-5-25 | | 8(x+4)+8=-8(2x+7) | | 3/8=a+3/4 | | x/3.4=7.6 | | 134-u=285 | | -3(x-1)+6=-(1+2x)+2 | | x/5.2=7.9 | | n-14.3=-26.8 | | 24(x+12)=3 | | a-15=4+3 | | 6+x3=12 | | 6(2n+1)=54 | | 2|3b+4|=46 | | 3(x+12)=24 | | 14x+85=253 | | 173w=w=9 | | x÷5-4=10 | | 12(n-6)=72 | | -3/5x=-21​ | | x/15-4=1 | | 12(n–6)=72 | | 1y+3y=20 | | -10x(-4x+1)=-50x(2+x) | | 34(10x)= | | 9x/3=5x-2 | | 34(10x)=144 | | 2m+5=32 | | 8.3-g=6.7 |

Equations solver categories